Long-lasting neuronal desynchronization caused by coordinated reset neuromodulation

نویسنده

  • Peter Tass
چکیده

A number of brain diseases, e.g. movement disorders such as Parkinsons disease, are characterized by abnormal neuronal synchronization. Within the last years permanent high-frequency (HF) deep brain stimulation became the standard therapy for medically refractory movement disorders. To overcome limitations of standard HF deep brain stimulation, we use a model based approach. To this end, we make mathematical models of affected neuronal target populations and use methods from statistical physics and nonlinear dynamics to develop mild and efficient control techniques. Along the lines of a top-down approach we test our control techniques in oscillator networks as well as neural networks. In particular, we specifically utilize dynamical self-organization principles and plasticity rules. In this way, we have developed coordinated reset (CR) stimulation, an effectively desynchronizing brain stimulation technique. The goal of CR stimulation is not only to counteract pathological synchronization on a fast time scale, but also to unlearn pathological synchrony by therapeutically reshaping neural networks. According to computational studies, CR works effectively no matter whether it is delivered directly to the neurons’ somata or indirectly via excitatory or inhibitory synapses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity

Abnormal neuronal synchrony plays an important role in a number of brain diseases. To specifically counteract abnormal neuronal synchrony by desynchronization, Coordinated Reset (CR) stimulation, a spatiotemporally patterned stimulation technique, was designed with computational means. In neuronal networks with spike timing-dependent plasticity CR stimulation causes a decrease of synaptic weigh...

متن کامل

Desynchronizing electrical and sensory coordinated reset neuromodulation

Coordinated reset (CR) stimulation is a desynchronizing stimulation technique based on timely coordinated phase resets of sub-populations of a synchronized neuronal ensemble. It has initially been computationally developed for electrical deep brain stimulation (DBS), to enable an effective desynchronization and unlearning of pathological synchrony and connectivity (anti-kindling). Here we compu...

متن کامل

Maladaptive Neural Synchrony in Tinnitus: Origin and Restoration

Tinnitus is the conscious perception of sound heard in the absence of physical sound sources external or internal to the body, reflected in aberrant neural synchrony of spontaneous or resting-state brain activity. Neural synchrony is generated by the nearly simultaneous firing of individual neurons, of the synchronization of membrane-potential changes in local neural groups as reflected in the ...

متن کامل

Counteracting tinnitus by acoustic coordinated reset neuromodulation.

PURPOSE Subjective tinnitus is associated with pathologic enhanced neuronal synchronization. We used a model based desynchronization technique, acoustic coordinated reset (CR) neuromodulation, to specifically counteract tinnitus-related neuronal synchrony thereby inducing an unlearning of pathological synaptic connectivity and neuronal synchrony. METHODS In a prospective, randomized, single b...

متن کامل

Acute effects and after-effects of acoustic coordinated reset neuromodulation in patients with chronic subjective tinnitus

Chronic subjective tinnitus is an auditory phantom phenomenon characterized by abnormal neuronal synchrony in the central auditory system. As shown computationally, acoustic coordinated reset (CR) neuromodulation causes a long-lasting desynchronization of pathological synchrony by downregulating abnormal synaptic connectivity. In a previous proof of concept study acoustic CR neuromodulation, em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012